

User’s Manual

&

Research Results

Version 2.0

2 May, 2016

©2015-2016 Computer Science Department, Texas Christian University

User’s Manual & Research Results v2.0

ii

Revision Signatures

By signing the following document, the team member is acknowledging that he has read the

entire document thoroughly and has verified that the information within this document is, to the

best of his knowledge, is accurate, relevant and free of typographical errors.

Name Signature Date

Sushant Ahuja

Cassio Lisandro Caposso

Cristovao

Sameep Mohta

User’s Manual & Research Results v2.0

iii

Revision History

The following table shows the revisions made to this document.

Version Changes Date

1.0 Initial Draft 1 May, 2016

2.0 Final Minor Changes 2 May, 2016

User’s Manual & Research Results v2.0

iv

Table of Contents
Revision Signatures ... ii

Revision History ... iii

1 Introduction .. 1

1.1 Purpose .. 1

1.2 Overview ... 1

2 Hadoop .. 2

2.1 Word Frequency Count ... 2

2.1.1 What is it? ... 2

2.1.2 Files Used ... 2

2.1.3 Results... 2

2.2 Matrix Multiplication .. 4

2.2.1 What it is? ... 4

2.2.2 File Used ... 4

2.2.3 Results... 5

2.3 K-Means Clustering .. 7

2.3.1 What it is? ... 7

2.3.2 Files Used ... 7

2.3.3 Results... 7

3 Spark ... 9

3.1 Word Frequency Count ... 9

3.1.1 What is it? ... 9

3.1.2 Files Used ... 9

3.1.3 Results... 9

3.2 Matrix Multiplication .. 11

3.2.1 What is it? ... 11

3.2.2 Files Used ... 11

3.2.3 Results... 12

3.3 K-Means Clustering .. 14

3.3.1 What is it? ... 14

3.3.2 Files Used ... 14

3.3.3 Results... 15

User’s Manual & Research Results v2.0

v

4 Using our Recommenders ... 16

4.1 Hadoop .. 16

4.1.1 Co-occurrence Algorithm ... 16

4.1.2 Implementing Co-occurrence recommender .. 16

4.2 Spark .. 18

4.2.1 Spark recommender Source Code .. 18

4.2.2 Data Files for Spark Recommender .. 18

4.2.3 1M ... 19

4.2.4 10M ... 19

4.2.5 20 M .. 20

4.2.6 22M ... 21

4.2.7 Instructions ... 21

4.2.8 Recommender results .. 22

5 Glossary of Terms: ... 23

User’s Manual & Research Results v2.0

1

1 Introduction

1.1 Purpose

The purpose of this document is to provide information to the user on how to run the movie

recommenders we have built for both systems Hadoop and Spark. Furthermore, we have a

detailed breakdown of the files used in this project as well as a graphical summary of each test

and results performed on environments - Hadoop and Spark, both single node and cluster.

1.2 Overview

This document includes the following four sections.

Section 2 - Hadoop: Gives a detailed overview of the tests we conducted (Word Frequency

Count, Matrix Multiplication, K-Means Clustering, Recommender) on our Hadoop cluster and

single node, and the graphs we put together to show our results.

Section 3 - Spark: Gives a detailed overview of the tests we conducted (Word Frequency Count,

Matrix Multiplication, K-Means Clustering, Recommender) on our Spark cluster and single

node, and the graphs we put together to show our results.

Section 4 – Using Our Recommenders: In this section we discuss how the user should use the

recommendation systems we built for both systems; Hadoop and Spark.

Section 5 - Glossary of Terms: Lists all the technical terms that are mentioned in this document

with their definitions.

User’s Manual & Research Results v2.0

2

2 Hadoop

2.1 Word Frequency Count

2.1.1 What is it?
 Word count is called the “Hello World” program of the Big Data development

 It is exactly what you think. We will have a text file as the input and we write a

MapReduce code to count the number of each word in that input file.

2.1.2 Files Used

 For the word count we performed the test with the following file sizes (all files can be

found in the following link):

 100 MB

 500 MB

 1 GB

 5 GB

 10 GB

 Inside the ‘Word Count’ folder, choose the appropriate file, example 100M.txt to run

the test. The format is just random strings of words each word follow by a new line.

2.1.3 Results

 Single Node

User’s Manual & Research Results v2.0

3

Observation: We observe that Java fails when the size of the input file is 500MB due to

heap size and feasibility problems. Hadoop performs better than Spark as Hadoop is better at

batch-processing.

 Cluster

Observation: We observe that Hadoop performs better again in the cluster and the time for

processing these files is considerably low as compared to single-node.

User’s Manual & Research Results v2.0

4

2.2 Matrix Multiplication

2.2.1 What is it?

 Matrix Multiplication it is an operation where we take a pair of matrices and produce

a new matrix

 Matrix Multiplication is very useful to test application performance.

 Matrix Multiplication is an integral part of a recommendation system.

2.2.2 File Used

 For matrix multiplication, we used the following set of matrix sizes, first being A.txt

and the second being B.txt:

 A.txt B.txt

1 2x5 5x3

2 10x10 10x10

3 50x50 50x50

4 100x200 100x200

5 1000x800 800x1000

6 5000x6000 6000x5000

 Sample File and sample output file

 To run the test for example; 100x200 and 100x200 go inside folder – matrix

multiplication/4/

 To generate your own matrices of any sizes, refer to the source code on the following

link: http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

User’s Manual & Research Results v2.0

5

2.2.3 Results

 Single Node

Observation: We observe that Java performs well when there is a sequential matrix

multiplication and the size of the input files is not large. Spark also performs really

well as it has great computational capability. Hadoop’s performance is unsatisfactory

due to less computational power.

User’s Manual & Research Results v2.0

6

 Cluster

Observation: We observe that the performance gets really better in a cluster.

However, Hadoop crashes when the size of matrix is large due to less number of

nodes in its cluster and its low disk-processing power.

User’s Manual & Research Results v2.0

7

2.3 K-Means Clustering

2.3.1 What it is?

 As the name suggests, Clustering implies grouping items together. But on the basis of

what?

 We use clustering in Big Data industry to group similar items/users together for better

data management.

 It has numerous applications in the business and helps them to target their customers

in a better way.

 K-Means algorithm is a simple, but widely used algorithm used for clustering. All

objects need to be represented as a set of numerical features. Also, the user has to

specify the number of groups (k) he wants

2.3.2 Files Used

 For this test we used files with different number of points, those points where

randomly generated, each point value ranges from 5 to 100 as floats. Below are the

files by number of records.

 1 K

 10 K

 100 K

 500 K

 1 M

 5 M

2.3.3 Results

 Cluster

User’s Manual & Research Results v2.0

8

Observation: We observe that Spark performs a little better for smaller files, but as

the size of the file is huge (5 million records in a file), Hadoop performs better as it

has good rate of data-processing for huge datasets.

User’s Manual & Research Results v2.0

9

3 Spark

3.1 Word Frequency Count

3.1.1 What is it?
 Word count is called the “Hello World” program of the Big Data development

 It is exactly what you think. We will have a text file as the input and we write a

MapReduce code to count the number of each word in that input file.

3.1.2 Files Used

 For the word count we performed the test with the following file sizes (all files can be

found in the following link):

 100 MB

 500 MB

 1 GB

 5 GB

 10 GB

 Inside the ‘Word Count’ folder, choose the appropriate file, example 100M.txt to run

the test. The format is just random strings of words.

3.1.3 Results

 Single Node

User’s Manual & Research Results v2.0

10

Observation: We observe that Java fails when the size of the input file is 500MB due to

heap size and feasibility problems. Hadoop performs better than Spark as Hadoop is better at

batch-processing.

 Cluster

Observation: We observe that Hadoop performs better again in the cluster and the time for

processing these files is considerably low as compared to single-node.

User’s Manual & Research Results v2.0

11

3.2 Matrix Multiplication

3.2.1 What is it?

 Matrix Multiplication is an operation where we take a pair of matrices and produce a

new matrix

 Matrix Multiplication is very useful to test application performance.

 Matrix Multiplication is an integral part of a recommendation system.

3.2.2 Files Used

 For matrix multiplication, we used the following set of matrix sizes, first being A.txt

and the second being B.txt:

 A.txt B.txt

1 2x5 5x3

2 10x10 10x10

3 50x50 50x50

4 100x200 100x200

5 1000x800 800x1000

6 5000x6000 6000x5000

 Sample Files and sample output file

 To run the test for example; 100x200 and 100x200 go inside folder – matrix

multiplication/4/

User’s Manual & Research Results v2.0

12

 To generate your own matrices of any sizes, refer to the source code on the following

link: http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

3.2.3 Results

 Single node

Observation: We observe that Java performs well when there is a sequential matrix

multiplication and the size of the input files is not large. Spark also performs really

well as it has great computational capability. Hadoop’s performance is unsatisfactory

due to less computational power.

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

User’s Manual & Research Results v2.0

13

 Cluster

Observation: We observe that the performance gets really better in a cluster.

However, Hadoop crashes when the size of matrix is large due to less number of

nodes in its cluster and its low disk-processing power.

User’s Manual & Research Results v2.0

14

3.3 K-Means Clustering

3.3.1 What is it?

 As the name suggests, Clustering implies grouping items together. But on the

basis of what?

 We use clustering in Big Data industry to group similar items/users together for

better data management.

 It has numerous applications in the business and helps them to target their

customers in a better way.

 K-Means algorithm is a simple, but widely used algorithm used for clustering. All

objects need to be represented as a set of numerical features. Also, the user has to

specify the number of groups (k) he wants

3.3.2 Files Used

 For this test we used files with different number of points, those points where

randomly generated, each point value ranges from 5 to 100 as floats. Below are

the files by number of records.

 1 K

 10 K

 100 K

 500 K

 1 M

 5 M

User’s Manual & Research Results v2.0

15

3.3.3 Results

 Cluster

Observation: We observe that Spark performs a little better for smaller files, but as

the size of the file is huge (5 million records in a file), Hadoop performs better as it

has good rate of data-processing for huge datasets.

User’s Manual & Research Results v2.0

16

4 Using our Recommenders

4.1 Hadoop

4.1.1 Co-occurrence Algorithm

In Hadoop, we used the co-occurrence algorithm using the Apache Mahout library. This

type of algorithm is Item-based which means the items will be suggested to the user

based on finding similar items to the ones the user already likes, again by looking to

others’ apparent preferences.

 In this algorithm, we start by creating a co-occurrence matrix. It is not as hard as

it sounds!

 We begin by finding some degree of similarity between any pair of items.

Imagine computing a similarity for every pair of items and putting the results

into a giant matrix. This is called a co-occurrence matrix.

 This matrix describes associations between items, and has nothing to do with

the users. It computes the number of times each pair of items occur together in

some user’s list of preferences.

 For example, if there are 17 users who express liking for both items A and B,

then A and B co-occur 17 times.

 Co-occurrence is like similarity, the more two items turn up together, the more

related/similar they are.

 The next step is to compute a user vector for each user. This vector tells which

movie has a specific user watched and which ones has he not.

 The final step to get the recommendations is to multiply the co-occurrence

matrix with the user vector.

4.1.2 Implementing Co-occurrence recommender

 We used the movie lens data for our recommender. Here is a link of the movie

lens data: http://grouplens.org/datasets/movielens/

 The original format of the movie lens data is:

userId movieId rating timestamp

 We convert* this format to the following format:

userId,movieId

*Note – The source code to convert from the movie lens format to our format

can be found on the link:

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

 We do this because our recommender in Hadoop is not rating-based, rather it is

item-based. It only takes into account the movies watched by the user.

http://grouplens.org/datasets/movielens/
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

User’s Manual & Research Results v2.0

17

 In the next step, you would have to upload the input file with the users and the

movies they have watched on the HDFS using the hadoop ‘put’ command as

mentioned earlier in the manual.

 You can find the source code of our whole recommender on the link:

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

 The command to run our recommender is as follows:

hadoop jar path_of_jar_file frogbdata.tcu.recommendereg.RecommenderJobRun

path_of_input_file_HDFS path_of_output_file_HDFS num_of_recommendations

http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

User’s Manual & Research Results v2.0

18

4.2 Spark

In Spark, we used collaborative filtering algorithm using Apache MLlib library. According to

Apache Spark documentation on MLlib collaborative filtering, “Collaborative filtering is

commonly used for recommender systems. These techniques aim to fill in the missing entries of

a user-item association matrix. spark.mllib currently supports model-based collaborative

filtering, in which users and products are described by a small set of latent factors that can be

used to predict missing entries. spark.mllib uses the alternating least squares (ALS) algorithm

to learn these latent factors.”

To learn more about ALS algorithm, refer to this link.

4.2.1 Spark recommender Source Code
To get the source code of our recommender, follow this link:
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html

Name of the file: MovieLensALSMain.py

4.2.2 Data Files for Spark Recommender

To get the data files, follow this link:http://grouplens.org/datasets/movielens/

Here, you will find different sizes of the real movie ratings (100K, 1M, 10M, 20M and

22M).

The format of the files are as follows:
 100K: 100,000 ratings (1-5) from 943 users on 1682 movies.

 ua.base: Format: User_Id Movie_Id Movie_Rating Time_Stamp

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&sqi=2&ved=0ahUKEwizxp7OirrMAhUjuoMKHRkwDN0QFghCMAk&url=http%3A%2F%2Fwww.mf.uni-lj.si%2Fdokumenti%2Fcd96efab02612fe28baec3677c16b989.ppt&usg=AFQjCNHQf6dk5jihx6FhGuQ-0s4ORM3vUQ&sig2=GYET6uHBNg73pzi5ZfgFnA&bvm=bv.121070826,d.amc&cad=rja
http://brazos.cs.tcu.edu/1516frogbdata/deliverables.html
http://grouplens.org/datasets/movielens/

User’s Manual & Research Results v2.0

19

 u.item: Sample Format

4.2.3 1M

1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040

MovieLens users who joined MovieLens in 2000.

 movies.dat: Sample Format

 ratings.dat: Format User_Id::Movie_Id::Movie_Rating::Time_Stamp

4.2.4 10M

 This data set contains 10000054 ratings and 95580 tags applied to 10681 movies by

71567 users of the online movie recommender service MovieLens.

 movies.dat: Sample format

 ratings.dat: Format: User_Id::Movie_Id::Movie_Rating::Time_Stamp

User’s Manual & Research Results v2.0

20

4.2.5 20 M
It contains 20000263 ratings by 138493 users across 27278 movies.
 movies.dat: Sample format

 ratings.dat: Format: User_Id::Movie_Id::Movie_Rating::Time_Stamp

User’s Manual & Research Results v2.0

21

4.2.6 22M
It contains 22884377 ratings by 247753 users across 34208 movies
 movies.dat: Sample format

 ratings.dat: Format: User_Id::Movie_Id::Movie_Rating::Time_Stamp

4.2.7 Instructions

 To give the personalized ratings for any number of users, run the python script

named “rateMovies” and follow the instructions: Keep in mind that the movies.dat

file (movies.dat file should be the same file for which you want to run the

recommender) should be in the same directory as the python script. This will

generate the file called “personalRatings.txt” that contains the personal ratings of the

user.

 Note: To start the recommender on a cluster of 2 nodes, run the following

commands:

User’s Manual & Research Results v2.0

22

start-dfs.sh

start-yarn.sh

hadoop fs -mkdir -p /user/username1/spark_recommender/

hadoop fs -put /home/username/Downloads/ml-latest/ /user/username1/spark_recommender/ml-

latest/

hadoop fs -put /home/username/Desktop/personalRatings.txt/

/user/username1/spark_recommender/personalRatings.txt

./spark/bin/spark-submit --master yarn-cluster --num-executors 5 --executor-cores 1 --executor-memory

3G /home/username/workspace/MovieLensALS/src/MovieLensALSMain.py

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/ml-latest/

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/personalRatings.txt

hdfs://HadoopSMaster:9000/user/username1/spark_recommender/output22M

4.2.8 Recommender results

 Cluster

Observation: We observe that both Hadoop and Spark took almost the same amount

of time for various sizes of input files. The performance of both the frameworks can

be much better if you have more than 2 nodes in your cluster and better algorithm

implementation.

User’s Manual & Research Results v2.0

23

5 Glossary of Terms

Apache Hadoop: Apache Hadoop is an open-source software framework written in Java for

distributed storage and distributed processing of very large data sets.

Apache Hadoop Yarn: YARN (Yet Another Resource Negotiator) is a cluster management

technology. It is characterized as a large-scale, distributed operating system for Big Data

applications

Apache Mahout: An Apache software used to produce free implementations of distributed

scalable machine learning algorithms that help in clustering and classification of data.

Apache Maven: A build automation tool for projects that uses XML to describe the project the

project that is being built and its dependencies on other external modules.

Apache Spark: Apache Spark is an open source cluster computing framework which allows

user programs to load data into a cluster's memory and query it repeatedly.

Big Data: Extremely large data sets that may be analyzed computationally to reveal patterns,

trends, and associations, especially relating to human behavior and interactions

Collaborative Filtering: Method to predict the interests of a user based on interests of other

users.

Co-occurrence algorithm: Counting the number of times each pair of items occur together and

then predicting the interests of a user based on the user’s previous interests and most co-occurred

items.

HDFS: Hadoop Distributed File System is a Java based file system that provides scalable and

reliable data storage.

IDE: Integrated Development Environment.

K-means clustering: A way of vector quantization used for cluster analysis in data mining.

Map Reduce: A programming model and an associated implementation for processing and

generating large data sets with a parallel, distributed algorithm on a cluster.

MLlib: Apache Spark’s scalable machine learning library that consists of common learning

algorithms and utilities including classification, clustering, filtering etc.

PyDev: A Python IDE for Eclipse which is used in Python Development.

Root Access: Access to install various software and related items on Linux machines.

User’s Manual & Research Results v2.0

24

Scala: A programming language for general software applications.

XML: XML stands for Extensible Markup Language that defines the protocol for encoding

documents in a format that is both, human and machine-readable.

